
Efficient Estimation of Maximum Entropy Language Models with N -gram
features: an SRILM extension

Tanel Alumäe1, Mikko Kurimo2

1Institute of Cybernetics, Tallinn University of Technology, Estonia
2Adaptive Informatics Research Centre, Aalto University, Finland

tanel.alumae@phon.ioc.ee, mikko.kurimo@tkk.fi

Abstract
We present an extension to the SRILM toolkit for training max-
imum entropy language models with N -gram features. The
extension uses a hierarchical parameter estimation procedure
[1] for making the training time and memory consumption fea-
sible for moderately large training data (hundreds of millions
of words). Experiments on two speech recognition tasks indi-
cate that the models trained with our implementation perform
equally to or better than N -gram models built with interpolated
Kneser-Ney discounting.
Index Terms: language modeling, maximum entropy, open
source

1. Introduction
Although maximum entropy (ME) language models (also
known as exponential language models) for speech recognition
were proposed long time ago [2], they have gained significant
attention in recent years (for example, [3, 4]) and are regarded as
one of the most promising techniques by many language mod-
eling researchers. Also, much research has been devoted to ad-
vances in efficient training, smoothing and adaptation methods
for ME models and generalized linear models in general (e.g.,
[5, 6, 7]).

There are numerous open-source toolkits for training and
applying ME models, e.g., MEGAM1, Maximum Entropy Mod-
eling Toolkit for Python and C++2, TADM3, Classias4. How-
ever, when the size of the output vocabulary in a ME model
is large (which is the case with language models), naive train-
ing becomes extremely resource consuming, requiring huge
amounts of memory and days or weeks to finish, even with
small and medium sized training data. One technique to over-
come this problem is to cluster words into classes and create
two or more models instead of a single one: one for classes,
and a second one for words-given-classes [8]. This allows to
drastically reduce computation time since the size of the output
vocabulary in each of the models is now much smaller. A sec-
ond approach takes advantage of the hierarchical nature of N -
gram features by sharing computations on lower-order N -gram
levels [1]. Unfortunately, none of the open-source ME toolkits
currently supports such techniques out-of-the-box, although it is
not difficult to apply the class-based method with any toolkit. In
addition, writing wrapper code for applying generic ME mod-

1http://www.cs.utah.edu/˜hal/megam
2http://homepages.inf.ed.ac.uk/lzhang10/

maxent_toolkit.html
3http://tadm.sourceforge.net
4http://www.chokkan.org/software/classias/

els for language processing tasks (such as rescoring) requires
considerable efforts.

In this paper, we describe an extension to SRILM [9] for
training ME models with N -gram features. SRILM is a highly
popular toolkit among language modeling researchers and has a
wide range of features. By implementing ME models according
to the SRILM API, we automatically get access to many useful
components that apply language models, such as N-best rescor-
ing, lattice rescoring, model interpolation, etc. We chose to im-
plement ME models as an extension to SRILM since it would
have been very resource-consuming to implement such features
independently. We used the hierarchical feature technique [1]
and a scalable optimization algorithm [5] to be able to handle
large sizes of training data. The paper gives an overview of our
implementation and reports perplexity and N-best rescoring re-
sults on two speech recognition tasks. Our experiments demon-
strate the ability of the implementation to scale up to moderately
large training data.

2. Maximum entropy language models
Maximum entropy (ME) modeling is a framework that has been
used in a wide area of natural language processing tasks. A
conditional ME model has the following form:

P (x|h) =
e
∑

i λifi(x,h)

Z(h)
(1)

where x is an outcome (in case of a LM, a word), h is a context
(the word history) and

Z(h) =
∑
xi∈V

e
∑

j λjfj(xi,h) (2)

where V a set of all possible outcomes (words). The functions
fi are (typically binary) feature functions. During ME training,
the optimal weights λi corresponding to features fi(x, h) are
learned. More precisely, finding the ME model is equal to find-
ing weights that maximize the log-likelihood L(X; Λ) of the
training data X . The weights are learned via improved iterative
scaling algorithm or some of its modern fast counterparts (e.g.,
conjugate gradient descent).

To avoid overfitting, ME models are usually smoothed (reg-
ularized). The most widely used smoothing method for ME
LMs is Gaussian priors [10]: a zero-mean prior with a given
variance is added to all feature weights, and the model opti-
mization criteria becomes:

L′(X; Λ) = L(X; Λ)−
F∑
i=1

λ2
i

2σ2
i

(3)

where F is the number of feature functions. Typically, a fixed
hyperparameter σi = σ is used for all parameters. The optimal
variance is usually estimated on a development set. Intuitively,
this method encourages feature weights to be smaller, by penal-
izing weights with big absolute values.

Estimating optimal feature weights for language models
can take prohibitively long time if done straightforwardly: in
each iteration of the estimation algorithm, one has to calcu-
late normalization factors Z(h) for all observed contexts in
the training data. For each context, this requires looping over
all words in the vocabulary – also those that didn’t occur in a
given context. However, [1] proposed a technique that greatly
decreases the complexity of calculating normalization factors
when features are nested and not overlapping, e.g.,N -gram fea-
tures. For example, for a history wi−1, wi−2, the normalization
factor can be calculated as follows:

Z(wi−1, wi−2) =∑
wi∈V efwi +∑

wi∈Vwi−1
(efwi−1wi − 1)efwi +∑

wi∈Vwi−2wi−1
(efwi−2wi−1wi − 1)efwi−1wi (4)

where V is the vocabulary, Vwi−1 is the set of words observed
after context wi−1 and Vwi−2wi−1 is the set of words observed
after context wi−2wi−1. The first part of the sum doesn’t de-
pend on the context and can be precomputed. The second part
of the sum is fixed for all contexts ending with wi−1 and its
value can be shared between histories ending with wi−1. The
final part requires summing over the set of words observed af-
ter the history wi−2wi−1 which is very small for most contexts.
This approach can be extended for features that are not strictly
nested.

3. Design and implementation
The ME extension for SRILM was designed with the following
goals in mind: (1) ability to handle large amounts of training
data (i.e., hundreds of millions of words); (2) incorporation of
state-of-the-art algorithms for training ME models; (3) transpar-
ent integration into SRILM, in order to make using ME models
for research and application development as easy as possible.

As the scalability to large training corpus was one of the
design targets, we represent features hierarchically and apply
the hierarchical training trick [1] described in the previous sec-
tion. During the writing of this paper, only strictly nested N -
gram features up to any length are supported, but we intend to
add support for more complex features in the future. The train-
ing process was inspired by the TextModeller toolkit (now part
of Python SciPy) [11]. We use the C++ valarray data struc-
ture for high-performance numerical operations when comput-
ing the normalization factors and feature expectations. The
valarray data structure provides a mechanism for expressing
many one-loop operations as a single expression which could be
highly optimized by the compiler. In addition, most expensive
parts of computing normalization factors and expectations are
parallelized using OpenMP directives. For parameter optimiza-
tion, we use the Orthant-Wise Limited-memory Quasi-Newton
(OWL-QN) method [5] through the libLBFGS5 library. The
`1 + `22 regularization scheme is used. Under this scheme, the

5http://www.chokkan.org/software/liblbfgs/

objective function becomes

L`1+`22
(X; Λ) = L(X; Λ)− α

D

F∑
i

|λi| −
F∑
i=1

λ2
i

2σ2
iD

(5)

where D is the number of training observations. The regular-
ization hyperparameters can be set by the user, with default pa-
rameters set to their global optimal values (α = 0.5, σ2 = 6)
as discovered empirically in [4].

The software can also perform simple adaptation as de-
scribed in [12]: this technique uses parameters estimated from
out-of-domain data as the prior means when learning parame-
ters from in-domain data. The objective function then becomes

L`1+`22
(X; Λ) = L(X; Λ)− α

D

F∑
i

|λ′i−λi|−
F∑
i=1

(λ′i − λi)2

2σ2
iD

(6)
where λ′i are parameters estimated from out-of-domain data.

We also designed a simple file format to represent ME mod-
els with N -gram features.

4. Experiments
4.1. Performance of ME models

In this section, we report how ME models trained with our im-
plementation perform on two speech recognition tasks.

Task 1: English Broadcast News. This recognition task
consists of the English broadcast news section of the 2003 NIST
Rich Transcription Evaluation Data. The data includes six news
recordings from six different sources with a total length of 176
minutes.

As acoustic models, the CMU Sphinx open source triphone
HUB4 models for wideband (16kHz) speech6 were used. The
models have been trained using 140 hours of speech.

For training the LMs, two sources were used: first 5M sen-
tences from the Gigaword (2nd ed.) corpus (99.5M words), and
broadcast news transcriptions from the TDT4 corpus (1.19M
words). The latter was treated as in-domain data in the adap-
tation experiments. We used only 5M sentences of Gigaword
data because our initial implementation didn’t scale properly to
larger training data. A vocabulary of 26K words was used. It is
a subset of a bigger 60K vocabulary, and only includes words
that occurred in the training data. The OOV rate against the test
set was 2.4%.

The audio used for testing was segmented into parts of up
to 20 seconds in length. Speaker diarization was applied us-
ing the LIUM SpkDiarization toolkit [13]. The CMU Sphinx
3.7 was used for decoding. A three-pass recognition strategy
was applied: the first pass recognition hypotheses were used for
calculating MLLR-adapted models for each speaker. In the sec-
ond pass, the adapted acoustic models were used for generating
a 5000-best list of hypotheses for each segment. In the first
two passes, a trigram LM was used that was an interpolation of
source-specific models which were estimated using Kneser-Ney
discounting. In the third pass, different LMs in turn were com-
pared in rescoring the hypotheses. Finally, the 1-best hypothesis
was selected, based on the new LM scores.

Task 2: Estonian Broadcast Conversations. The second
recognition task consists of four recordings from different live
talk programs from three Estonian radio stations. Their format
consists of hosts and invited guests, spontaneously discussing

6http://www.speech.cs.cmu.edu/sphinx/models/

Table 1: Performance comparison of various trigram and ME models on two tasks.

Perplexity WER
Task Model training Trigram Maxent Trigram Maxent

Out-of-domain 301 297
In-domain 315 309

English Interpolated 218 219 25.7 26.0
Adapted N/A 217 25.5
Adapted ME + Interpolated trigram 206 25.5
Out-of-domain 245 239
In-domain 446 458

Estonian Interpolated 184 187 39.4 39.2
Adapted N/A 177 38.0
Adapted ME + Interpolated trigram 167 37.5

current affairs. There are 40 minutes of transcriptions, with 11
different speakers.

The acoustic models were trained on various wideband Es-
tonian speech corpora: the BABEL speech database (9h), man-
ually transcribed Estonian broadcast news (7.5h) and manually
transcribed radio live talk programs (10h). The models are tri-
phone HMMs, using MFCC features.

For training the LMs, two sources were used: about 10M
sentences from various Estonian newspapers, and manual tran-
scriptions of 10 hours of live talk programs from three Estonian
radio stations. The latter is identical in style to the test data,
although it originates from a different time period and covers a
wider variety of programs, and was treated as in-domain data.

As Estonian is a highly inflective language, morphemes are
used as basic units in the LM. We use a morphological analyzer
[14] for splitting the words into morphemes. After such pro-
cessing, the newspaper corpus includes of 185M tokens, and
the transcribed data 104K tokens. A vocabulary of 30K tokens
was used for this task, with an OOV rate of 1.7% against the test
data. After recognition, morphemes were concatenated back to
words.

As with English data, a three-pass recognition strategy in-
volving MLLR adaptation was applied.

Results. For both tasks, we measured the perplexity of a
wide range of models against the test data and performed a few
N-best rescoring experiments. We built trigram models using
interpolated Kneser-Ney discounting from out-of-domain data
and in-domain data, and interpolated the models, using devel-
opment data for optimizing the interpolation weight. Similarly,
ME models were built using hierarchical trigram features. We
also built an adapted ME model, using the out-of-domain model
as a prior for estimating in-domain model. This model also
included N -gram features occurring only in in-domain data,
which thus received a zero prior value for the corresponding
weight – this is similar to [12]. Finally, we mixed two best-
performing models of different kind – interpolatedN -gram and
adapted ME model. No feature cut-off was applied for any of
the models. For ME models, default regularization parameters
were used. The results are given in Table 1.

We analyzed the differences in per-speaker WER scores us-
ing the Wilcoxon test. For the English task, the WER differ-
ences were not statistically significant, except for the difference
between interpolated N -gram (25.7) and adapted ME (25.5)
models. On the other hand, for the Estonian task, all WER dif-
ferences were significant, except the difference between inter-
polatedN -gram (39.4) and interpolated ME (39.2) models. The
results confirm the findings in [12] that the adaptation technique

 0

 1000

 2000

 3000

 4000

 5000

0 100 200 300 400 500 600 700
 0

 5

 10

 15

 20

 25

Ti
m

e
 (

se
co

n
d
s)

M
e
m

o
ry

 (
G

B
)

Training data (millions of words)

Memory
Time

Figure 1: Graph of training time and maximum RAM usage vs.
size of training data (40K vocabulary, trigram features).

is very suitable for situations where in-domain training data is
very limited (only 104K tokens for the Estonian task).

4.2. Training time and memory usage

We measured the time and maximum RAM required for train-
ing ME models with varying sizes of training data. We took in-
creasing amounts of sentences from the English Gigaword (2nd
ed.) corpus, starting from the beginning of the corpus. We used
a 40K vocabulary (most frequent words in the first 10M sen-
tences in the corpus) and trigram features with no cutoff. The
machine used for the experiments had an Intel Quad Core Xeon
X5550 processor (2.66 GHz, 8 MB cache) and 24 GB DDR3
RAM. All four cores were participating in the computations.
The training times (excluding time required for loading the data
and storing the model) and peak RAM usages are reported in
Figure 1.

The most time-consuming sections of the ME training al-
gorithm – calculating normalization factors and expectations,
and precomputing exponents of feature weights on each eval-
uation of the objective function – were parallelized using
OpenMP instructions. We measured the duration of one train-
ing run with increasing maximum number of threads (using the
OMP NUM THREADS environment variable), using 240M
words of Gigaword training data, 40K vocabulary (most fre-

0

500

1000

1500

2000

2500

3000

1 2 3 4

S
e
co

n
d
s

Number of CPU cores

Figure 2: Graph of training time vs. number of CPU cores used
(training with 240M words, 40K vocabulary, trigram features).

quent words in the data), and trigram features. The times are
given in Figure 2.

5. Discussion and Future Plans
We implemented an extension to the SRILM toolkit for training
and applying ME language models with N -gram features. The
goal of our work was to provide a fast and memory-efficient
open-source implementation of ME models for language mod-
eling purposes. Experiments show that ME models trained with
our extension are competitive in accuracy to N -gram models
trained using interpolated Kneser-Ney smoothing. We imple-
mented a hierarchical training technique [1] and used a scalable
training algorithm [5] enabling us to train models on moder-
ately large training corpora (hundreds of millions of words) in
relatively short time (up to an hour) on a moderately equipped
workstation (quad core CPU with 24 GB RAM). We also imple-
mented a simple adaptation technique which uses a model built
from background data as a prior for estimating in-domain model
[12]. This technique outperforms linear interpolation when in-
domain data is very limited.

The implementation has currently a few shortcomings. The
models are restricted to nested N -gram features and as such
provide little performance benefits compared to N -gram mod-
els with similar features, especially considering that N -gram
models can be trained in shorter time with less memory. There-
fore, we plan to add support for more complex feature hier-
archies in the future. First, we intend to implement the hi-
erarchical training technique for overlapping hierarchical fea-
tures which would make possible to use other factors of the
history besides word identities (such as word classes, syntactic
features) since this is the area where ME models should pro-
vide benefits over N -gram models. Secondly, we want to add
support for hierarchical “feature sets”, where a model consists
of general and domain-specific features, and during training,
global and domain-specific parameters are optimized jointly,
using parameters built from pooled data as priors for domain-
specific parameters [15, 7]. This method should be ideally
suited for language modeling in speech recognition: we al-
most always have access to large amounts of data from written
sources but commonly the speech to be recognized is stylisti-

cally noticeably different. The hierarchical adaptation method
enables to use even a small amount of in-domain data to modify
the parameters estimated from out-ouf-domain data, if there is
enough evidence.

We plan to make the extension available for incorporation
into the main SRILM distribution.

6. Acknowledgments
This research was partly funded by the Academy of Finland in
the project Adaptive Informatics, by the target-financed theme
No. 0322709s06 of the Estonian Ministry of Education and Re-
search and by the National Programme for Estonian Language
Technology.

7. References
[1] J. Wu and S. Khudanpur, “Building a topic-dependent maximum

entropy model for very large corpora,” in Proceedings of ICASSP,
Orlando, Florida, USA, 2002.

[2] R. Rosenfeld, “Adaptive statistical language modeling: A max-
imum entropy approach,” Ph.D. dissertation, Carnegie Mellon
University, 1994.

[3] R. Sarikaya, M. Afify, Y. Deng, H. Erdogan, and Y. Gao,
“Joint Morphological-Lexical language modeling for processing
morphologically rich languages with application to dialectal
arabic,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 16, no. 7, pp. 1330–1339, 2008.

[4] S. F. Chen, “Performance prediction for exponential language
models,” in Proceedings of HLT-NAACL, Boulder, Colorado,
2009, pp. 450–458.

[5] G. Andrew and J. Gao, “Scalable training of L1-regularized
log-linear models,” in Proceedings of the 24th International
Conference on Machine Learning. Corvalis, Oregon, USA:
ACM, 2007, pp. 33–40.

[6] C. Foo, C. B. Do, and A. Y. Ng, “A majorization-
minimization algorithm for (multiple) hyperparameter learning,”
in Proceedings of the 26th Annual International Conference on
Machine Learning. Montreal, Quebec, Canada: ACM, 2009,
pp. 321–328.

[7] J. R. Finkel and C. Manning, “Hierarchical Bayesian domain
adaptation,” in Proceedings of HLT-NAACL, Boulder, Colorado,
2009, pp. 602–610.

[8] J. Goodman, “Classes for fast maximum entropy training,” in
Proceedings of ICASSP, Utah, USA, 2001.

[9] A. Stolcke, “SRILM – an extensible language modeling toolkit,”
in Proceedings of ICSLP, vol. 2, Denver, USA, 2002, pp. 901–
904.

[10] S. F. Chen and R. Rosenfeld, “A survey of smoothing techniques
for ME models,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 8, no. 1, pp. 37–50, 2000.

[11] E. J. Schofield, “Fast parameter estimation for joint maximum en-
tropy language models,” in Proceedings of Interspeech, Jeju, Ko-
rea, 2004, pp. 2241 – 2244.

[12] C. Chelba and A. Acero, “Adaptation of maximum entropy
capitalizer: Little data can help a lot,” Computer Speech &
Language, vol. 20, no. 4, pp. 382–399, Oct. 2006.

[13] P. Deléglise, Y. Estéve, S. Meignier, and T. Merlin, “The LIUM
speech transcription system: a CMU Sphinx III-based system for
French broadcast news,” in Proceedings of Interspeech, Lisboa,
Portugal, 2005.

[14] H.-J. Kaalep and T. Vaino, “Complete morphological analysis
in the linguist’s toolbox,” in Congressus Nonus Internationalis
Fenno-Ugristarum Pars V, Tartu, Estonia, 2001, pp. 9–16.

[15] H. Daume III, “Frustratingly easy domain adaptation,” in
Proceedings of ACL, 2007, pp. 256–263.

